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Solutions of the Fokker-Planck (Kramers) equation in position-velocity space 
for the double-well potential d2x2/2 + d4x4/4 in terms of matrix continued frac- 
tions are derived. It is shown that the method is also applicable to a Boltzmann 
equation with a BGK collision operator. Results of eigenvalues and of the 
Fourier transform of correlation functions are presented explicitly. The lowest 
nonzero eigenvalue is compared with the escape rate in the weak noise limit for 
various damping constants and the susceptibility is compared with the zero-fric- 
tion-limit result. 
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1. I N T R O D U C T I O N  

The problem of Brownian motion of particles in potentials is applied in 
such different fields as superionic conductors,/1-3) Josephson tunneling 
junctions,~4 6) rotation of dipoles, (7 9) phase-locked loops, (1~ charge den- 
sity waves, (12't3) simple isomerization processes (14-~s) like the transition in 
the NH 3 molecule, (19) chemical reaction theory, (2w28) bistable nonlinear 
oscillator, (29-3~) second-order phase transitions, (32~ ligand migration of 
biomolecules, (33) Lorenz equations. (34/ Whereas in Refs. 1-13 the potential 
is a periodic function of the position, the simplest form in Refs. 14~34 is a 
double-well potential. In a number of papers (35-a~ the Brownian motion in 
a periodic (e.g., cosine) potential was investigated; see also Chap. l l  of 
Ref. 41 for a review. In the present paper the Brownian motion in a 
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double-well potential is treated. The potential is assumed to have the sim- 
ple form of a fourth order Taylor expansion with inversion symmetry, i.e., 
it reads (Landau potential (~2)) 

f ( x )  = d2x2/2 + d4x4/4 (1.1) 

with positive d4 and negative d2. The Brownian motion in a potential is 
described by an appropriate Fokker-Planck 143,44) or Kramers (2~ equation, 
which is essentially a diffusion equation with first derivatives of the dis- 
tribution function in position-velocity space, i.e., in phase space. Some of 
the first derivative terms (streaming terms) describe the reversible motion 
in the potential without damping; the damping term and the diffusion term 
(collision term) describe the irreversible motion. The Fokker-Planck 
equation arises because the noise is assumed to stem from many tiny dis- 
turbances. The streaming term also appears in the Boltzmann equation. 
Here, however, the collision term is nonlinear and it has a complicated 
form. A simple linearized version of this collision operator is the BGK 
operator proposed by Bhatnagar, Gross, and Krook/45) The resulting 
Boltzmann equation with this BGK collision operator and some 
generalizations have been investigated in chemical physics, (~7'24b) We treat 
both equations simultaneously, because our method of solution is 
applicable to both equations. 

A large number of special solutions mostly for special parameters for 
the problem above exist. If for instance the damping constant is large, the 
Fokker-Planck equation in phase space is reduced to the Fokker-Planck 
equation in position space, i.e., to the Smoluchowski equation. It has been 
investigated, e.g., in Refs. 46-48. In the low-temperature limit the transition 
rate from the left to the right well is especially of interest and can be given 
analytically for not too low damping constants. The result was first 
obtained by Kramers ~2~ and later on by Refs. 49 and 50. A corresponding 
expression for the BGK case was derived in Ref. 51. For finite temperatures 
the lowest nonzero eigenvalue, which is twice the escape rate, was obtained 
in Refs. 17 and 24 by using the high-friction expansion of the eigenvalue 
and then determining the eigenvalue for intermediate friction by Pad6 
approximants. Fourier transforms of correlation functions have been 
obtained in Refs. 52 and 53 by a projection method leading to ordinary 
continued fractions. In the present paper we solve the Kramers equation 
for the double-well potential (1.1) applying the method developed for 
arbitrary potentials in Refs. 37-40 (see also Chap. 10 of Ref, 41). In Refs. 
35, 36, 39, and 40 the method was applied to a periodic potential By this 
method eigenvalues and eigenfunctions of the Kramers equation as welt as 
the Fourier transform of its transition probability can be obtained in terms 
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of matrix continued fractions. The method consists in the following. First 
the distribution function is expanded in Hermite functions with respect to 
the velocity, (54) as first done by Brinkman (2~) and additionally also in Her- 
mite functions with respect to position. Next by inserting this distribution 
function into the Fokke~Planck equation we obtain a recursion relation 
for the expansion coefficients. By introducing a suitable vector and matrix 
notation this recurrence relation is then cast into a tridiagonal vector 
recurrence relation. Finally this vector recurrence relation is solved by 
matrix continued fractions. As will be shown the method works well down 
to very low friction constants and up to barrier heights of AE/(kT)= 10. In 
the low-friction limit 7 ~ 0, the energy must be introduced as new variable. 
We will treat this limit case in a further publication(55~; see also the similar 
method for the periodic potential. (56'58~ For the Boltzmann equation with a 
BGK collision operator the same method can be used as shown in Ref. 39 
for the periodic potential. 

The present paper is organized as follows. In Section 2 the basic 
equations and appropriate normalizations are given. In Section 3 the 
general results of the matrix-continued-fraction method are presented. In 
Section 4 explicit results for the eigenvalues and eigenfunctions of the 
Fokker-Planck equation and for the Boltzmann equation with BGK 
collision operator are given. Finally in Section 5 some susceptibilities, i.e., 
Fourier transforms of some correlation functions, are shown. Preliminary 
results for the eigenvalues have already been reported in Ref. 59. 

2. BASIC E Q U A T I O N S  

The equation of motion for particles of mass m in the potential per 
mass f ( x )  defined in (1.1) with a damping force m~2 and a fluctuating force 
mF(t) is given by 

2 + 72 + d2x + d4 X3 = F(t) (2.1) 

If d2>0,  d4>0,  (2.1) without the noise force F(t) is called a Duffing 
equation. Though the nonlinearity changes the motion of x(t), many 
features of the linear equation with d4 = 0 are still present for d4 > 0. In this 
case the potential (1.1) has only one minimum. For the double-well poten- 
tial d2 <0,  d4 >0 ,  however, the motion x(t) strongly deviates from the 
linear case. The potential (1.1) has now two minima at 

x+ = +(-dz /d4)  m (2.2) 

separated by a maximum at x = 0 with the potential difference 

A f  = f(O) - f(x+_ ) = ~/(4d4) (2.3) 
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Thus for small energies the particle oscillates either in the left or right well, 
i.e., one has a bistable operation. Introducing the velocity v = 2, (2.1) may 
be written as a system of first-order equations, i.e., 

(2.4) 
(J = --~/Tj - -  d z x  - d4 X3 + F ( t )  

The motion of x(t) and v(t) without the noise F(t) is best discussed by 
looking at those trajectories in phase space, which go through the saddle 
point x = v = 0; see Fig. 1. The other singular points are x = x+ ,  v = 0. 
Notice that trajectories not going through the saddle point cannot cross 
each other. Trajectories starting in the shaded region go to the left well, the 
others to the right well. The term F(t) describes the white noise. It is 
assumed to be Gaussian with zero mean and with the correlation function 

(F(t) F(t')) = 270 6( t -  t') (2.5) 

where the noise strength 0 is proportional to the temperature T 

0 = kT/m (2.6) 
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Fig. 1. The trajectories of the noiseless equation (2.4) going through the origin (saddle 
point) for d4 = 1, da= -1,  7=0.1. 
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Even weak noise (low 0) has the effect that the particles do not stay in the 
same region in Fig. 1, but that they have a chance to go in the opposite 
direction, so that particles from the left well may finally reach the right well 
and vice versa. In the following we put the mass m = 1 for convenience of 
notation. 

The Langevin equations (2.4) are equivalent to the following 
Fokker-Planck equation for the distribution function W(x, v, t) in phase 
space (20,43,44) 

aW/3t= L W  (2.7) 

where the operator L is the Fokker-Planck operator LFp given by 

O O c ~2 
L = Lye = - ~ x  v +-~v (2v + d2x q -  d4x3) + 70 a/) 2 (2.8) 

The Fokker-Planck equation (2.7), (2.8) is valid, if the noise stems from 
many tiny disturbances, each of which changes the variables in an 
unpredictable, but small way. In chemical physics one also uses the model, 
where at each collision the velocities of the particles are changed in such a 
way that the velocities are distributed according to the Maxwell dis- 
tribution 

g~a(v) = (2rt0 1/2 exp[_v2/(20)] (2.9) 

The equation of motion for the distribution function is then given by (2.7), 
where L is the BGK operator (1%24'45) 

0 0 
LBOK = -- ~X V + ~V (d2x + d4 x3) 

- -  ~ 1 7 6  " " " d ~  - (2.1o) 

The stationary solution in both cases is given by the Boltzmann dis- 
tribution 

Wst(x, v) = NgM(v) exp[ -- f(x)/O] 

= N(2g0) - 1/2 exp( -- E/O) 
(2.11) 

where we have introduced the energy 

E = v2/2 + f ( x )  (2.12) 
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and where the normalization constant N is given by 

N - l =  e x p [ - f ( x ) / O ]  d x=  u 1/2 exp[_d2u/ (20)_d4u2/ (40)]  du 
o:3 

= rcl/2(20/d4) 1/4 exp[d~/(8Od4)] D 1/2[dz/(20d4) 1/2] (2.13) 

Here D~ is the parabolic cylinder function (Ref. 60, p. 337). We also can 
express analytically the stationary moments 

foo f~ooO ( X 2 ~ t ) s  t ~-- X 2# exp[ -- f (x) /O] dx/ exp[ - f ( x ) / O ]  dx 
oO 

= (20/a4)~/2[v(u + 1/2)/F(1/2)] 

• D _ ~ _  1 /2[d2 / (2d40) l /2] /O _ l /2Fd2/(Zd40) 1/2 ] (2.13a) 

It is much more difficult to obtain time-dependent solutions of (2.7), (2.8), 
and (2.10). Because L does not depend on time we can make the separation 
ansatz 

W(x, v, t) = O(x, v) e -~' (2.14) 

leading to the eigenvalue equation 

L~(x, v)=  -20 (x ,  v) (2.15) 

For large damping 7 the operator L of the corresponding Smoluchowski 
equation can be brought to a Hermitian form by multiplying it from the 
left with the inverse of the square root of the stationary distribution and 
from the right by the square root itself, i.e., 

L = (Wst) 1/2L(Wst) 1/2 (2.16) 

For intermediate or small damping constants, [, is neither for the 
Fokker-Planck nor for the BGK case a Hermitian operator. Thus, in 
general, the eigenvalues 2 are complex. The eigenvalues of (2.16) are the 
same, i.e., 

E0(x, v)= -XO(x,  v) (2.17) 

and the eigenfunctions are connected by 

O(x, v) = ~(x, v)(Wst) 1/-, (2.18) 

For the Kramers equation the most important time-dependent solution is 



Solut ions of the Fokker-Planck Equation 403 

the transition probability P(x,  v, t J x', v', 0), which is a solution of (2.7), 
(2.8) with the initial condition 

P(x,  v, O[ x', v', O)= 3 ( x -  x') 6 ( v -  v') (2.19) 

With the help of P and Wst any two-time correlation functions can be 
calculated. 

Normal izat ion 

For later purposes it is very convenient to use proper normalized 
parameters. By introducing the new variables and parameters 

x- -  X/Xo, = v/Q, i= tVo/Xo 
~ ~ -'2~__ ~-2 ~-2 

: 7~O/ffO ' d2 _ d2 Xo/Vo, d4 _- d4 Xo/V 0 - - 4  ~-2 

= o/Q 

(2.20) 

it is easy to show that the normalized distribution functions and the eigen- 
values for the old and the new variables are connected by 

W ( x , v , t ; d 2 ,  d40,7)=(XoVo) -I  W(x, v, ~ d2, d4, O, y) (2.21) 

2(d2, d4, 0, 7) = (vo/xo) 2(d2, 34, 0, •) (2.22) 

A very important quantity for the process is the energy difference AE = m A f  
divided by kT. Using (2.3), (2.6) and (2.20) we obtain 

d E  A f  ~ d 2 
- - - ~ _ (2.23) 

k T  0 4d40 4d40- 

which shows that the quantities AE/ (kT)  are invariant under the transfor- 
mation (2.20). The ratio of the damping to the frequency (d2) 1/2 (d 2 > 0) or 
tO the imaginary part of the frequency ( - d 2 )  1/2 (d2 < 0 )  is also invariant, 
i.e., 

7/1d211/2 = ~/Id2] 1/2 (2.24) 

More invariants can be found from (2.20). Both scaling factors x0 and 3o 
are arbitrary. Thus one may normalize two of the four parameters 
d2, d4, 0, 7. Very convenient choices used later on are the following: 

>0 
d 4 = l ,  2r +1, for d 2 

< 0  

20 = []d2]/d4] 1/2, fro = Id2]/(d4) 1/2 

AE/ (kT)  = 1/(40"), 7/Jd21 i/2 = 

(2.25) 

(a) 

822/40/'3-4-3 



404 Voigtlaender and Risken 

(b) d 4 = l ,  0 = 1  

2 0 -~- (O/d4) 1/4, 00 = (0) 1/2 (2.26) 

AE/(kT) = d~/4 

According to (2.20)-(2.22) distribution functions and eigenvalues for not 
normalized parameters can easily be obtained from those for the nor- 
malizations (a) and (b). 

3. S O L U T I O N S  IN T E R M S  OF M A T R I X  
C O N T I N U E D  F R A C T I O N S  

The expressions in this chapter simplify a lot if we use the nor- 
malization (2.26), i.e., if we put O=d4= 1 (omitting the bar). We first 
expand the distribution function W(x, v, t) into orthonormalized Hermite 
functions (s4) 

fDn(r = H n ( ~ / ~ )  e - & ~ 4 ~ I n !  2n(2~)1/2] 1/2 (3.1) 

in the following way: 

n = 0  q = 0  

• ~(v) ~(~x) (3.2) 

Here c~ is a proper scaling factor, which will be chosen later on. The 
function in front of the sum is proportional to the square root of the 
stationary distribution (2.11). The expansion (3.2) guarantees that the 
boundary conditions for v and x at + infinity are satisfied. The Hermite- 
function expansion in v is very convenient, because the ~b~(v) are the eigen- 
functions of the irreversible part L,~ of the Fokker-Planck operator (2.8) or 
of the BGK operator (2.10), i.e., those parts containing 7: 

Lir~bo(V) ~b.(v)= -71.(Jo(V) ~.(v) (3.3) 

Here l, for the Fokker-Planck and BGK case are given by (24) 

In =- IFp, = n (3.4a) 

In = IBOKn = 1 -- C5,, o (3.4b) 

Insertion of (3.2) into (2.7) and using the recurrence relations for the Her- 
mite functions leads to 

( :P=-(n--}-I) t /2ZDP'qcq+I--TIncP--~EJDP'qcq 1 (3.5) 
q q 
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where the D p'q and JDP'q a r e  the matrix elements of the operators 
D = ~ / O x -  �89 D = ~?/Ox + �89 with respect to the eigenfunctions ~bn(~x), 
see Refs. 38, 39, and 41. For the potential (1.1) we obtain the following 
matrix elements (upper signs are valid for D pq, lower signs for DPq) 

( = j~pq/ ( ~f- ) (~p,q--3" [q(q--  1 ) ( q -  2) 31/2/(2c~3) 

+ 6p,q_l- x ~  [~/2 + ( -T- ) 3q/(2c~ 3) + ( -T- ) d2/(ZcQ ] 

+ 6p,q+ 1 x/P[  - c ( 2  + ( -T- ) 3p/(2c~ 3) + ( T- ) dz/(ZcQ] 

+ ( -T- ) 6p,q+3[p(p - 1)(p - 2)] 1/2/(2~ 3) (3.6) 

Thus only the matrix elements D p'p+-I, D p'p+-3 can be different from zero 
for the potential (1.1). For other potentials, however, also other matrix 
elements may be different from zero. 

Truncating the expansion (3.2) at the index q =  Q and using the 
column vectors en and the matrices D (and similarly I)) defined by 

t0) ( 0o 1 Cr  t " "  

c .  = " , D = o iQO " ( 3 . 7 )  
c f  .-. O Qe 

the system of differential equation (3.5) may be cast in the form 

/ ~ =  - ( n +  1 ) l / 2 D c ~ + l - T / ~ % - ~ l ) e . _ l  (3.8) 

As it was explained in Refs. 37, 38, and 41 the eigenvalues as well as the 
Laplace transform of the Green's function matrix of the tridiagonal vector- 
recurrence relation (3.8) can be expressed in terms of matrix continued 
fractions. The eigenvalues and eigenvectors follow from (I = unit matrix) 

[2I + ~,0( - 2 ) ]  Co = 0 (3.9) 

i.e., the eigenvalues 2 are determined by the transcendental equation 

Do(2) = Det[2I  + Ko( -2 )3  = 0 (3.10) 

(For some more general forms see Refs. 38 and 413.) In (3.9), (3.10)Ko(s) 
is given by the following matrix continued fraction: 

K o ( s ) = D [ ( s + ? l j ) I - 2 " D [ ( s + ? 1 2 ) I  . . . .  3-11) ]  11) (3.11) 

[see (10.140) of Ref. 413. For the Fokker-Planck and the BGK case In 
must of course be replaced by (3.4a) and (3.4b), respectively. To obtain the 
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eigenfunctions, the other e, with n > 0 must also be determined. This can 
be done by 

cn = S+_ 1( - )o) '"" gg ( - 2) Co (3.12) 

where the S+ (s) are given by the infinite matrix-continued-fractions 

S,+ ( s )=  - ( n  + 1) 1/2 {(s + l,+ 1'~) I 

- ( n + 2 )  D[(s+l ,+27)I  . . . .  ] ~I)} t I )  (3.13) 

see (t0.142) of Ref. 41. To perform the normalization the eigenvectors of 
the adjoint equation must be used. As shown in Ref. 41 (p. 256), however, 
they can be expressed in terms of the eigenfunctions of the equation itself. 

The Laplace transform of the transition probability matrix of (3.5), 
P q  i.e., G,,~(t)=(Gnm(t)) and therefore also the Laplace transform of the 

transition probability of (2.7), (2.8) can also be expressed in terms of 
matrix continued fractions (Ref. 4t, Chapter 10.3.1). The general result for 
the stationary joint distribution reads (see (10.146) of Ref. 41) 

Wz(X , 1), t; x', v', O) = N~o(V ) exp[ - f(x)/2 ] Oo(v') exp[ - f(x')/2 ] 

x ~ ~ ~GP~(t) Op(ax) Oq(~x') O,(v) Om(V') (3.14) 
n , m  = 0 p , q  

As will be shown in Section 5 the velocity correlation functions <v(t) v(O)> 
and <v(t)x(O)> can be expressed in terms of suitable correlation functions 
of position only, i.e., of the type <g(x(t))g(x(O))>. Because of the 
orthonormality of the ~b~(v) we obtain 

(g(x(t)) g(x(O)) ) 

= Ifll g(x) g(x') W2(x, v, t; x', v', O) dxdvdx' dv' 

= N ~  c~GP~(t) f g(x) Op(ax) exp[ - f ( x ) / 2 ]  dx 
P , q  

x f g(x') ~q(aX') exp[ - f ( x ' ) /2]  dx' (3.15) 

Thus we only need to know the matrix elements G6q(t) of the Green's 
function matrix Goo(t). The Laplace transform of this matrix, i.e., 

f P, oo(S) = Goo(0 e s, d t  (3.16) 
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can be expressed by the matrix continued fractions (3.11) (Ref. 41, p. 251), 
i.e., 

(~(s) = ((~poq(s)) = [ s I -  ~0(s)] 1 (3.17) 

Obviously at the negative eigenvalues (s = - 2 )  poles of (~(s) occur. 

4. E IGENVALUES A N D  E I G E N F U N C T I O N S  

By calculating the matrix continued fraction (3.1l) eigenvalues can be 
found from (3.10) by some root-finding technique. For real eigenvalues an 
ordinary regula falsi method was used, whereas for complex eigenvalues a 
two-dimensional regula falsi method was applied. Here the real part 2r and 
the imaginary part 2i of the complex eigenvalue 2 are determined by the 
real and imaginary parts of (3.10). The dimension (Q + 1)x ( Q +  1) of the 
matrices [compare (3.7)] and the number N of inversions for obtaining an 
approximate value of the infinite continued fraction (3.11) have been deter- 
mined in such a way that a further increase of N and Q did not change the 
result of the plots. The final results are independent of the scaling factor c~. 
By choosing a proper scaling factor, however, the truncation indices Q and 
N can be minimized. For small ~ and large AE/(kT) values large Q and N 
have to be used [typical values are ~=O.1, AE/(kT)=I/(4g)= 
10, Q = 40, N =  160], whereas for large ~ only few inversions are needed 
(~7= 5, Q = 10, N =  10). Therefore the method does not work in the limit 

~ 0 or g ~  0 but the relatively low value ~=  0.1 and ~=  0.025 can be 
handled. 

Because of the symmetry of the problem, the eigenfunctions are either 
symmetric or antisymmetric, i.e., 

~,(x, v)= +_~s(-X, v) (4.1) 
a a 

zq and ,.2q + ~ can be different from zero, For symmetric eigenfunctions only c2~ ~2n + 
2q + 1 and 2q whereas for antisymmetric eigenfunctions only c2n c2, +1 can be dif- 

ferent from zero. Therefore the dimension of the vectors en can be reduced 
~ and e r e d  by a factor 2 leading to a e r~d The matrices S]ed connecting ~,+1 

- n  �9 - n  

are thus only Q/2 x Q/2 matrices (Q even). Because the number of com- 
putational steps needed to invert a Q x Q matrix is proportional to Q3, the 
computing time is reduced by a factor 8 by using this symmetry property. 

In the plots we have used the normalization (2.25). The transfor- 
mation from the normalization (2.26) used in Section 3 to the nor- 
malization (2.25) is easily obtained from (2.22). In Figs. 2 and 4 the real 
and complex eigenvalues of the Kramers operator are plotted as a function 
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Fig. 2, The eigenvalues normalized according to (2.25) (~2 = -1 ,  ~4 = 1) as a function of 
for A E = k T  for the Kramers equation of the bistable potential. The real eigenvalues are 
shown by solid lines, the complex eigenvalues by broken lines. Real parts of the complex 
eigenvalues are shown in (a) and imaginary parts in (b). Same numbers correspond to the 
same complex eigenvalue. The indices s and a denote symmetric and antisymmetric eigen- 
functions. 
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Fig. 3. Same as Fig. 2, but  for the B G K  case. 
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of the normalized damping constant y for the bistable potential for 
dE  = k T  and for zlE = 5kT, whereas in Fig. 3 the real and complex eigen- 
values are shown for the BGK case for d E =  kT. As seen in these figures 
the eigenvalues are always real for large damping constants. (As was 
already mentioned in the introduction for large y the Kramers equation 
reduces to the Smoluchowski equation, which has only real eigenvalues.) If 
the damping constant decreases, some eigenvalues remain real down to 
very low damping constants, whereas for some other eigenvalues two real 
eigenvalues come together for decreasing y and then, at the vertical slope, 
two complex conjugate eigenvalues appear if y is decreased further. This 
feature was also found for the eigenvalues of the Kramers equation describ- 
ing the motion in a periodic potentiaP 39'61) and for the eigenvalues of the 
laser Fokker-Planck operator for intensity and inversionJ 62) Figure 2 
shows the interesting feature that some of the complex conjugate eigen- 
values form, for a small interval of ~ values, again two real eigenvalues (see 
the two bubbles in the upper part of Fig. 2a). By comparing Figs. 2 and 4 
it is seen that for larger AE/(kT)  ratios the eigenvalues have a simpler 
structure, especially the imaginary parts. By comparing Figs. 2 and 3 it is 
seen that for the same AE/(kT)  value the eigenvalues have a simpler struc- 
ture for the BGK case than for the Kramers case. 

In Fig. 5 the eigenvalues are shown for the Duffing equation. They 
have, at least for small 9, a similar behavior as the eigenvalues for the 
parabolic potential f ( x ) =  d2x2/2 (d 2 > 0), which for the Kramers case are 
given by [see for instance (10.83) of Ref. 41] 

2,,.n 2 = l?(nl + n2) + i(d2 - 72/4)u2 (nl -/ /2) 

n l , / ' / 2  = 0, 1, 2,... 
(4.2) 

The main difference of the eigenvalues in Fig. 5a to the eigenvalues (4.2) is 
the connection between the eigenvalues. This net-like structure is also seen 
in Figs. 2a-4a. Obviously only eigenvalues belonging to symmetric (or 
antisymmetric) eigenfunctions are connected. 

4.1. Lowest Nonzero Eigenvalue 

For the bistable potential the lowest nonzero eigenvalue is very impor- 
tant, because it describes for AE>>kT the transition rate from the left to the 
right well and vice versa. Because of the symmetry this transition rate r is 
given by 

r = 21/2 (4.3) 



S o l u t i o n s  o f  t h e  F o k k e r - P l a n c k  E q u a t i o n  4 1 1  

(a) . - . r  J |  = r ' ' i = ~ , , I = , P , I = J , ~ | 

, ,  r i _ z \3 "~. S 

i i i  I1 / /  / / sct 

o 

0 1 2 3 /., 
.y 

(b) 

Fig. 4. 

(-4 

Xi 

o 

cw 

I 

" \  \ \ ~ x  

i// / / I~ / 

- ~ - ~ ~  ~ 

' ' ' ' I . . . .  I . . . .  I . . . .  

0 1 2 3 4 
? 

Same as Fig. 2, but  for AE= 5kT. Because of its smallness the lowest nonzero real 
eigenvalue coincides with the ~[ = 0 line and is therefore not  seen. 
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Fig. 5. Same as Fig. 2, but for the Duffing equation (~2 = 1, ~4  = l ,  ~[ = 0.25). In Fig. 5b only 
the positive imaginary parts are shown. 
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(see also the discussion in Section 2 of Ref. 61). For the bistable potential 
this eigenvalue is always real, if the temperature is low enough. (No such 
eigenvalue exists for the Dulling equation.) For high barrier heights trans- 
ition rates r =  21/2 have been derived for the Fokker-Planck (2~176 and 
the BGK case. (51) In the normalization (2.25) these expressions take the 
following form: 

Fokker-Planck: 

~1 = (~/rc)[-(1 + y2/4)1/2 - y/2] exp[ - 1/(40)] (4.4a) 

BGK: 

2"t = (4 xf2/z~) uf+~(1+uZ)-2duexp[-1/(40)] (4.4b) 

[In the last expression we have used the substitution u=exp(-cobt ) in 
Eq. (14) of Ref. 51.] Because of the exponential factor we have plotted in 
Fig. 6 the first nonzero eigenvalue multiplied by the inverse exponential in 
(4.4), i.e., we have plotted 

Z+ = ~1 exp[ 1/(4g)] = ,T1 exp[AE/(kT)] (4.5) 

As seen in Fig. 6 the value obtained by the matrix-continued-fraction 
method agrees fairly well with the asymptotic expression (4.4), if ~ is not 
too small. For very small ~ and in the low-temperature limit 0 with ~/0~ 1 
one may derive the expression (55's9/ 

,~1 = (~ [23/2/(3~z) ] {1 - ~c [4~7/(3~0)] 1/2 } exp[ - 1/(40")] (4.6) 

with tc = 0.85544. An expression similar to (4.6), but without the additional 
term ~73/2 was obtained by Garrity and Skinner for the BGK case. (17) As 
seen in Fig. 6 these low-friction-limit results also agree fairly well with the 
results obtained by the matrix-continued-fraction method. 

4.2. E i g e n f u n c t i o n s  

The eigenfunctions are obtained by calculating the coefficients en 
according to (3.12) and then performing the summation in (3.2). [The nor- 
malization is explained in (2.22) of Ref. 39]. The matrices S + ( - 2 )  occur- 
ring in (3.12) need not be calculated separately. They appear in inter- 
mediate steps in the calculation of (3.11). These matrices, however, must 
now be stored. The altitude chart of a typical real antisymmetric eigen- 
function belonging to the lowest nonzero real eigenvalue is shown in Fig. 7. 
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Fig. 6. The lowest nonzero real eigenvalue (4.5) for the normalization (2.25) ( a~2=- l ,  
c74 = 1) as a function of ,7 for the (a) Kramers (b) and BGK case. The asymptotic expressions 
(4.4) are shown by the dotted line, the zero friction limit (4.6) in (a) and the corresponding 
one of Garrity and Skinner in (b) by a broken line. 



Solu t ions  of  the  Fokker -P lanck  Equat ion 415 
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Fig. 7. Altitude chart of the antisymmetric eigenfunction ~1 belonging to the lowest nonzero 
eigenvalue ~ of the Kramers equation for the bistable potential in the normalization (2.25). 
The parameters are ?7=0.25, g=0.25. The lines ~bl=c=const are shown for c=0, _+0.1, 
_+0.2, _+0.3, _+0.4, _+0.5, _+0.6 (solid lines) c=  _+0.05, _+0.15 (broken lines), c=  +0.001, 
-+0.005, -+0.01 (dotted lines). 

For energies in the vicinity of the energy of the potential minima the lines 
of constant q~l approximately agree with the lines of constant energy. For 
larger energies the lines starting in one of the wells twist somewhat around 
the other well. The picture has some similarity to Fig. 1. Whereas in Fig. 1 
the trajectory going through the origin spirals inwards in clockwise direc- 
tion, the line ~bl = 0 in Fig. 7 spirals outwards in clockwise direction. The 
nodal line ~b~ = 0 was approximately obtained in Ref. 25b. Near the origin 
it agrees very well with our result. Outside the origin, however, we have 
only qualitative agreement. For times large compared to the inverse of the 
real parts of the other eigenvalues the solution of the Fokker-Planck 
equation is given by 

W(x,v, t)=Ws,(x,v)+C~l(x,v)exp(-21t ) for t~>l/Re{22} (4.7) 

where C is a proper constant determined by the initial condition. Thus the 
first eigenfunction ~bl(x, v) is important for the transition to the stationary 
distribution. 
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5. S U S C E P T I B I L I T I E S  

The susceptibility describes the response of the system to a small exter- 
nal field of frequency co. For the response of the position x and velocity v 
these susceptibilities are denoted by 2:~(co) and Z~(co), respectively, They are 
connected to the half-sided Fourier transform of the correlation functions 

Rx~(~) = fo ~ ~o 
vt) 

x(n x(0) \ 
x( t )  v(O) ~, e 
v(t) v(O) / 

-i~o, dt (5.1) 

according to (see for instance Ref. 41, Chapter 7) 

zx(co) = f  Go(co) =~ [ <x:(0) > - icoK~(co)] 

1 ~ ico 
Z~(co) = Kv,,(~) = ~Tx~(co) 

T 

1 [ ico<x2(O)  > + (.o2~.xx((.o)l 
0 

(5.2) 

(5.3) 

Thus the susceptibilities Xx(co) and 2%(0)) can be expressed by the half-sided 
Fourier transform of the correlation function Kxx(t) = <x(t) x(O)), which 
can be expressed by 

Kxx(co) = K:~x(~~ - i~"x(o~)  

= N  ~ ~ ~ G ~ q ( s - i c o )  
p = 0 q = O  

(5.4) 
x x exp[ - f ( x ) / ( 2 0 ) ]  Cp(c~x) dx 

- - o o  

x x'  e x p [ - f ( x ' ) / ( 2 0 ) ]  Cq(C~x') dx' 
- - o o  

according to (3.15)-(3.17). Here we use the unnormalized variables of Sec- 
tion 2, but we will present our result in the normalization (2.25). In order 
to calculate Xx(co) and )~v(co) we therefore need to calculate the matrix con- 
tinued fraction (3.17) with s=ico and the integrals occurring in (5.4). 
Because of the symmetry of the potential (1.1) only terms with odd p and q 
appear in the final sum of (5.4). Therefore we can reduce our matrices to 
the half, similary as done in Section 4. (For a review article about suscep- 
tibility properties see Ref. 63.) 



Solutions of the Fokker-Planck Equation 417 

5.1. Z e r o - F r i c t i o n  L imi t  

In the zero-friction limit (7 ~ 0) and for bistable operation (d 2 < 0), we 
now give analytical expressions for the Fourier transform of the correlation 
function 

~"x(co)= Re { f o  (x( t )  x(O) ) e io~t dt} 

= ( x ( t ) x ( O ) ) e - i O t d t  (5.5) 
O:3 

: s o,(co)+ s;0,(cot+ s n,(co) 
n=0 n=l  

If we introduce the energy E, the parameter 7(E), the nome q, and the 
oscillator frequencies co o and col 

E = v2/2 + dzx2/2 + d4x4/4 (5.6) 

~(e) = Id21 + (d~ + 4d4E) I/2 = co__~ (5.7) 
2(d~ + 4d4E ) 1/2 co~ 

[ K'(~)~ [ K(1-~)] (5.8) 
q(c0=exp - ~ K ~ j = e x p  - ~  K(~) ] 

cog = (d 2 + 4d4E) 1/2 (5.9) 

coff = l[Id~l + ( ~  + 4d4E) 1/2 ] (5.10) 

where K(m) and E(m) are the complete elliptic integrals of the first and 
second kind, (64) we can express S~ n), S~ "), and co in parameter represen- 
tation (E is the running parameter) and S~~ as follows: 

SIn'(CO ) = N" 16rcaTco4 exp (-~--0E) 

• {(21rO)1/2ar~4(n+~) [q(o~)n+l/2+q(O:)-(n+x/2)] 2 

X I1 -I- Id2'''~[ E(0~) l'~ -1 (5.11) 
cog ( 1 - ~ )  K ( ~ ) l l  

co = n + " 7Zcoo/K(c~) (5.12) 

for 0 < E <  oe and n=O, 1, 2,..., 
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N'  2/t 3 fo 0) 1 exp(-E/O) 
S(20)(0)) = (2"~--d)'~ d4 a~2/(4d4) K(1/~) dE" 3(0)) (5.13) 

S(2")(0)) = N '  16rc2~0) 4 e x p ( -  E/O) 

x ((2~0) 1/2 d]nEq(1/cQ" + q(1/e) ,,]2 

(5.14) 
L 0)02 ( ~ -  1 )K(1 /~ ) J31 /  

0) = n " x0)l/K(1/~) (5.15.) 

for -d~ / (4da)<E<O and n = 1, 2, 3,... 

It follows from (5.12) that S~)(0)) is defined in the interval [-0, oo), 
while (5.15) shows that S(f)(0)) is defined in EO, n.(2[d2[)~/2]. The 
expressions (5.11)-(5.15) have been derived by Onodera. (65) In this 
reference, however, the term S(2~ proportional to the 3 function is mis- 
sing. For an alternative derivation see the Appendix. For the Duffing 
equation (d 2 > 0) formulas are simplified to terms containing only S~")(0)), 
but they will not be given here (see Ref. 65). 

5.2. Results 

In Figs. 8 and 9 the real part K'~(05) of the half-sided Fourier trans- 
form of the correlation function (2(7))7(0)) for the double-well potential 
-22/2  +24/4 is shown for various damping constants f and in the zero 
friction limit f ~ 0. This Fourier transform was obtained by Matsuo (53) for 
temperatures O >~0.25 and damping constants ,7~>0.5 using a projection 
operator method. As seen much lower damping constants and temperatures 
can be handled by the present method. It is even possible to obtain K~(0)) 
for the low friction constant f=0.01  so that the connection to the 
analytical zero-friction limit can be made. As seen in Fig. 8 K'~(05) has 
three maxima for low ~, one at 05 = 0, the other at 05 ~ 0.6, and the third at 
05~ 1.3. These structures are explained as follows. The maximum at zero 
frequency, i.e., the response to a constant force stems from the fact that 
particles move from the left to the right well if the force is switched on. A 

K~(0)) closer inspection of the numerical values shows that, near 05~0, - '  ~ 
can be approximated by the Lorentz line 

K~(0)) = A - -  (5.16) 
11 +05 2 
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Fig. 9. Same as Fig. 8 but with 0"=0.25 (AE=kT) and for one ordinate scale only. 

where ~1 is the first nonzero eigenvalue describing the transition from the 
left to the right well and vice versa (see Section 4). Eq. (5.16) implies that 
the correlation function for large times is given by 

(2(7) 2c(0)) = Ae ~17 (5.17) 

For low temperatures A is nearly equal to the stationary expectation value 
(s  but for larger temperatures it is less than (2~).  For 77-~0 (5.16) 
passes over to 

K'~(~) = A~O(&) (5.18) 

because ~1 goes to zero for 9"--+0 [see (4.6)]. The comparison with 
(5.5), (5.13) shows that the constant A for ,7~0  is given by 

N2rc 2 fo co~ exp(-E/O) 
A - (2rt0)t/2 d4 @(4&) K(1/~) dE 

_ N f l  x 2 exp[ - E ( x ,  v)/O] dx dv 
( 2 g 0 )  1/2 oo _d~2/(4d4)<~E(x,v)~O 

(5.19) 

where E(x, v) is given by (5.6). 
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Evaluation of the integral in (5.19) shows, that A for ~7~ 0, and (:~2) 
agree for small temperatures g. Up to terms proportional to ~r we have [cf. 
also -(2.13a) for # = lJ 

i ~ (~2(0)) ~ (I 2t21/214)(1 - gl4O/~) -- 1 - ~ (520) 

which agrees very well with the value determined by the matrix continued 
fraction method for ~= 0.01 and ~'= 0.05. 

The maximum at 65~0.6 stems from those particles, which have 
energies larger than zero and thus oscillate from the left to the right well 
and vice versa, whereas the maximum at 65 ~ 1.3 stems from those particles, 
which have energies less than zero and oscillate in the wells. The frequen- 
cies of the maxima and their widths are approximately given by the 
imaginary and real parts of the antisymmetric complex eigenvalues (see 
Fig. 4). In the zero-friction limit the first maximum at 65 = 0 passes over to 
the 5-function term in (5.5), (5.13) (this term was not obtained in Ref. 65), 
whereas the other maxima have a finite width and finite height for ~7-* 0. 
Whereas for the low-temperature value A E  = 5 k T  in Fig. 8 the maximum at 
65 = 0.6 is lower than the one at 65 = 1.3, the reverse is true for the higher 
temperature A E = k T  in Fig. 9. Here the second maximum at 65~1.3 is 
degenerated to a hump. The shift of the maximum at 65~0.6 of the ~= 0.02 
curve and its larger value (larger than the ~)-* 0 curve) may be explained as 
follows. For finite ~) the ~-function peak at 65 = 0 actually has a finite width. 
The tail of this peak, which leads to a small but finite value at 65 ~0.6, has 
to be added to the dotted curve. It is seen that near 65~1.3 the ,)=0.01 
curve agrees much better with the zero-friction-limit result than near 
65 ~ 0.6. This larger deviation at 65 ~0.6 and especially the larger frequency 
shift of the maximum may be explained by the fact that the motion of the 
particles just going over the top of the double-well potential is more 
influenced by the constant than the motion of particles at the bottom of the 
wells. The finite values in the zero-friction-limit curve for ( 5 ) x ~  in 
Figs. 8,9, and l l  stem from the terms with n>~2 in (5.11),(5.14). In 
Figs. 10 and 1 1 the real and imaginary parts of the susceptibility )/x(65) are 
shown for A E  = 5kT.  This susceptibility describes the response of the coor- 
dinate 2 to an external force. Because it is given by (5.2) the imaginary part 
is given by/~r multiplied by 65/~. The discussion is essentially the same 
as in Fig. 8. The real part Z~-(65) in Fig. l0 shows the in-phase response of 
to the external force. At the frequencies 65~0.6 and 65~1.3 a typical in- 
phase response of oscillators is seen for small damping constants. It should 
be noted that the zero-friction-limit result was obtained by the Hilbert 
transformation. The 8-function peak was omitted. If it is added an 
additional 1/o5 part has to be added, leading for small 65 to a better 
agreement between the low- and the zero-friction-limit result. 
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In the actual calculation the following effect was observed: If the trun- 
cation indices Q and N are not chosen large enough, a larger number of 
artificial peaks occur for small ~. By increasing the order of Q and N and 
by choosing a proper scaling factor e, these artificial peaks then disappear. 
For ~-- 0.01 and A E  = 5 k T  we have used Q = 40, N =  160, ~ = 5, leading to 
the smooth curve shown in Fig. 8. 

6. C O N C L U S I O N  

It was shown that the calculation of eigenvalues and eigenfunctions as 
well as correlation functions for the Kramers equation in a double-well 
potential of the form d2x2/2 + d4x4/4 can be obtained very effectively with 
the same matrix-continued-fraction method. By slight modifications of the 
matrix continued fraction the BGK case could also be handled. We have 
seen that the method works very well up to ~ E / ( k T )  ratios of 5 and for 
damping constants down to 7=0.01, so that the connection to the 
corresponding asymptotic results could be made. For  potentials of the form 

' d l x  + d2x2/2 + d3x3/3 + d4x4/4 + "'" + d2Nx2N/(2N) (d2N > 0) the same 
method is applicable. The matrix elements O pq and /)Pq will then have a 
more complicated form than (3.6). (For asymmetric potentials, however, 
no symmetry property can be used.) For more complicated potentials the 
method may also be applied. In general, however, the matrix elements must 
then be calculated numerically. In the zero-friction limit, the energy 
becomes a slow variable and therefore a transformation to the energy 
variable has to be made and the transformed Fokker-Planck equation has 
to be solved. This will be investigated in a forthcoming publication. (55) 

A P P E N D I X  

Zero-Fr ic t ion  Limit 

In the zero-friction limit the stationary solution W~t is still given by 
(2.11), whereas the transition probability (2.19) for finite times t is, owing 
to the deterministic motion, given by 

P(x, v, t I x', v', 0) = 3(x - X) '  3(v - V) (A1) 

Here X =  X(x' ,  v', t) and V= V(x', v', t) are the solutions of the equations 
of motion (2.4) without damping and fluctuations, i.e., they are solutions of 
the system 

2 = v, b = - d 2 x  - d4 x3 (A2) 
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with the initial condition 

Y(x',v',O)=x', V(x',v',O)=v' (A3) 

The correlation function (3.15) may thus be written in the form 

( g ( x ( t ) )  g(x(O)) ) 

= f f f f  g (x)  6(x  - X(x ' ,  v', t)) 6(v - V(x', v', t)) Wst(X', 
u I ) 

x g(x ' )  dxdv dx'dv' = f f  g (X(x ' ,  v', t)) g(x ' )  Wst(x', v r ) dx' dv' (A4) 

Thus the autocorrelation function Kxx(t) is given by 

Kxx(t) = ( x ( t )  x(0))  = (2~0)-1/2 N f f  X(x ' ,  v', t) x I 

�9 exp[( -v '2 /2  - dzx'2/2 - d4x'4/4)/O] dx' dr' (A5) 

In the following we use the abbreviations (5.7), (5.9), and (5.10) and 

a 2 = [Jd21 + (d 2 + 4d4E)l/2]/d4 = 2co~/d4 (A6) 

Instead of the variables x' and v' we use the energy (5.6) and the angle 
defined by 

~arc cos x'/a, E > 0 
O = t k ( x " v ' ) = ~ a r c s i n { ~ [ 1 - ( x ' / a ) ~ ] I / 2 }  E < 0  

(A7) 

The solutions of the system (A2) with the initial condition (A3) may then 
be expressed in terms of the Jacobian elliptic functions (for the elliptic 
functions we use the notation of Ref. 64) for: 

E>O:  
x( t )  = a. cn(cOo t + ~, c~) (AS) 

v(t) = - a . c o  o sn(coot + ~, ~) �9 dn(~Oot + ~, c~) (A9) 

and for 

-d~ / (4d4)  <~ E < O: 

x( t )  = +_a" dn(OJlt + ~, 1/c~) (AI0) 

a 
v(t)= - -co 1 �9 sn(colt + ~, l/e)-cn(co~ t + t), 1/c~) (Al l )  
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The upper sign in (A10) is valid in the right well, the lower in the left well. 
The period of the functions sn(0, c~) and cn(0, c~) is 4K(e), whereas the 
period of the function dn(r ~) is 2K(e), where K(e) is the complete elliptic 
integral of the first kind. (64) For t = 0  we can express x' and v' by 
(A8)-(AI1) as a function of E and 0. If we use instead of the variables x', 
v' the variables E and 0, the double integral (A5) is transformed to 

Kxx(t ) = (2~0)-1/2 N' (2(.0o) 3 [ f o  e-E/~ t)dE.~o a2 

+ a 2. 2 e-e/~ O dE (A12) 
- -  ~/(4d4) (D 1J  

II(E, t) = [4K(~) cn(cOot + 0, ~) cn(r ~) d0 (A13) 
~0 

I2(E, t) = [2~(u~) dn(col t + 0, l/a) dn(r 1/~) d 0 (A14) 
~0 

In deriving (A12) we have used that the Jacobian of the transformation 
from x' and v' to the E and r variables is given by 

O(E, 0) f~Oo, E>O 
J=o(x ' ,v ' - -~)  - t[.~1, E < 0  (A15) 

The factor 2 in front of the last integral in (AI2) stems from the fact that 
we have two wells for E<0.  In order to evaluate the integrals in (A13) and 
(A14) we use the following series expansion of the elliptic functions cn and 
dn (see 16.23.2, 16.23.3 of Ref. 64) 

cn(u,m)= /-~(m)~ol+qZn+,cos ( 2 n + 1 ) 2 ~  (A16) 

dn(u,m)-2K(m)+K--~n~l l+qZ------~cos 2 n 2 ~ -  ~ (A17) 

where the nome q is given by (5.8). By inserting the appropriate 
expressions (A16) and (A17) into (A13) and (A14) we can perform the 
integration over 0 leading to 

4n2q(~) ~ q2n(~) 
II(E, t ) -  ~ ~--o r l  + q2~+ ~(~)3 2 

nto o t 3 
• cos (2n+ 1)~.--;77-7, , ] ,  for E > 0  (A18) 

Zl~tC~)J 
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7r2 { q2n(1/c~) 
I2(E,t)=2K(1/~ ) 1 + 8  ~ [ l + q 2 , ( 1 / c 0 ]  2 

n = l  

I ~e)lt ~ -d2~<E<O (a19) 
x cos 2n 2K(1/c~)JJ' for 4d4 "~ 

Because we are interested in the susceptibilities we have to make a half- 
sided Fourier transform of the correlation function (A12). For further 
treatment we restrict ourselves to the calculation of the real part R'x(co). 
The imaginary part ~" K~x(co) follows from the Kramers-Kronig relations. 
Because of 

fo g I f  ~o ~t e_~O,~ 7z cos~tcoscotdt=~ cos dt=5[a(~-co)+6(~+co)] 
o o  

we can immediately perform the cos transformation of It(E, t) and I2(E, t). 
Because of the 6 function we can then easily perform the integration over E 
and finally arrive at (5.5) and (5.11)-(5.15), 
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